pandas.core.window.rolling.Window.mean#
- Window.mean(numeric_only=False, **kwargs)[source]#
Calculate the rolling weighted window mean.
- Parameters:
- numeric_onlybool, default False
Include only float, int, boolean columns.
New in version 1.5.0.
- **kwargs
Keyword arguments to configure the
SciPyweighted window type.
- Returns:
- Series or DataFrame
Return type is the same as the original object with
np.float64dtype.
See also
pandas.Series.rollingCalling rolling with Series data.
pandas.DataFrame.rollingCalling rolling with DataFrames.
pandas.Series.meanAggregating mean for Series.
pandas.DataFrame.meanAggregating mean for DataFrame.
Examples
>>> ser = pd.Series([0, 1, 5, 2, 8])
To get an instance of
Windowwe need to pass the parameter win_type.>>> type(ser.rolling(2, win_type='gaussian')) <class 'pandas.core.window.rolling.Window'>
In order to use the SciPy Gaussian window we need to provide the parameters M and std. The parameter M corresponds to 2 in our example. We pass the second parameter std as a parameter of the following method:
>>> ser.rolling(2, win_type='gaussian').mean(std=3) 0 NaN 1 0.5 2 3.0 3 3.5 4 5.0 dtype: float64