Duplicate Labels#

Index objects are not required to be unique; you can have duplicate row or column labels. This may be a bit confusing at first. If you’re familiar with SQL, you know that row labels are similar to a primary key on a table, and you would never want duplicates in a SQL table. But one of pandas’ roles is to clean messy, real-world data before it goes to some downstream system. And real-world data has duplicates, even in fields that are supposed to be unique.

This section describes how duplicate labels change the behavior of certain operations, and how prevent duplicates from arising during operations, or to detect them if they do.

In [1]: import pandas as pd

In [2]: import numpy as np

Consequences of Duplicate Labels#

Some pandas methods (Series.reindex() for example) just don’t work with duplicates present. The output can’t be determined, and so pandas raises.

In [3]: s1 = pd.Series([0, 1, 2], index=["a", "b", "b"])

In [4]: s1.reindex(["a", "b", "c"])
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[4], line 1
----> 1 s1.reindex(["a", "b", "c"])

File ~/work/pandas/pandas/pandas/core/series.py:4997, in Series.reindex(self, index, axis, method, copy, level, fill_value, limit, tolerance)
   4980 @doc(
   4981     NDFrame.reindex,  # type: ignore[has-type]
   4982     klass=_shared_doc_kwargs["klass"],
   (...)
   4995     tolerance=None,
   4996 ) -> Series:
-> 4997     return super().reindex(
   4998         index=index,
   4999         method=method,
   5000         copy=copy,
   5001         level=level,
   5002         fill_value=fill_value,
   5003         limit=limit,
   5004         tolerance=tolerance,
   5005     )

File ~/work/pandas/pandas/pandas/core/generic.py:5557, in NDFrame.reindex(self, labels, index, columns, axis, method, copy, level, fill_value, limit, tolerance)
   5554     return self._reindex_multi(axes, copy, fill_value)
   5556 # perform the reindex on the axes
-> 5557 return self._reindex_axes(
   5558     axes, level, limit, tolerance, method, fill_value, copy
   5559 ).__finalize__(self, method="reindex")

File ~/work/pandas/pandas/pandas/core/generic.py:5580, in NDFrame._reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy)
   5577     continue
   5579 ax = self._get_axis(a)
-> 5580 new_index, indexer = ax.reindex(
   5581     labels, level=level, limit=limit, tolerance=tolerance, method=method
   5582 )
   5584 axis = self._get_axis_number(a)
   5585 obj = obj._reindex_with_indexers(
   5586     {axis: [new_index, indexer]},
   5587     fill_value=fill_value,
   5588     copy=copy,
   5589     allow_dups=False,
   5590 )

File ~/work/pandas/pandas/pandas/core/indexes/base.py:4383, in Index.reindex(self, target, method, level, limit, tolerance)
   4380     raise ValueError("cannot handle a non-unique multi-index!")
   4381 elif not self.is_unique:
   4382     # GH#42568
-> 4383     raise ValueError("cannot reindex on an axis with duplicate labels")
   4384 else:
   4385     indexer, _ = self.get_indexer_non_unique(target)

ValueError: cannot reindex on an axis with duplicate labels

Other methods, like indexing, can give very surprising results. Typically indexing with a scalar will reduce dimensionality. Slicing a DataFrame with a scalar will return a Series. Slicing a Series with a scalar will return a scalar. But with duplicates, this isn’t the case.

In [5]: df1 = pd.DataFrame([[0, 1, 2], [3, 4, 5]], columns=["A", "A", "B"])

In [6]: df1
Out[6]: 
   A  A  B
0  0  1  2
1  3  4  5

We have duplicates in the columns. If we slice 'B', we get back a Series

In [7]: df1["B"]  # a series
Out[7]: 
0    2
1    5
Name: B, dtype: int64

But slicing 'A' returns a DataFrame

In [8]: df1["A"]  # a DataFrame
Out[8]: 
   A  A
0  0  1
1  3  4

This applies to row labels as well

In [9]: df2 = pd.DataFrame({"A": [0, 1, 2]}, index=["a", "a", "b"])

In [10]: df2
Out[10]: 
   A
a  0
a  1
b  2

In [11]: df2.loc["b", "A"]  # a scalar
Out[11]: 2

In [12]: df2.loc["a", "A"]  # a Series
Out[12]: 
a    0
a    1
Name: A, dtype: int64

Duplicate Label Detection#

You can check whether an Index (storing the row or column labels) is unique with Index.is_unique:

In [13]: df2
Out[13]: 
   A
a  0
a  1
b  2

In [14]: df2.index.is_unique
Out[14]: False

In [15]: df2.columns.is_unique
Out[15]: True

Note

Checking whether an index is unique is somewhat expensive for large datasets. pandas does cache this result, so re-checking on the same index is very fast.

Index.duplicated() will return a boolean ndarray indicating whether a label is repeated.

In [16]: df2.index.duplicated()
Out[16]: array([False,  True, False])

Which can be used as a boolean filter to drop duplicate rows.

In [17]: df2.loc[~df2.index.duplicated(), :]
Out[17]: 
   A
a  0
b  2

If you need additional logic to handle duplicate labels, rather than just dropping the repeats, using groupby() on the index is a common trick. For example, we’ll resolve duplicates by taking the average of all rows with the same label.

In [18]: df2.groupby(level=0).mean()
Out[18]: 
     A
a  0.5
b  2.0

Disallowing Duplicate Labels#

New in version 1.2.0.

As noted above, handling duplicates is an important feature when reading in raw data. That said, you may want to avoid introducing duplicates as part of a data processing pipeline (from methods like pandas.concat(), rename(), etc.). Both Series and DataFrame disallow duplicate labels by calling .set_flags(allows_duplicate_labels=False). (the default is to allow them). If there are duplicate labels, an exception will be raised.

In [19]: pd.Series([0, 1, 2], index=["a", "b", "b"]).set_flags(allows_duplicate_labels=False)
---------------------------------------------------------------------------
DuplicateLabelError                       Traceback (most recent call last)
Cell In[19], line 1
----> 1 pd.Series([0, 1, 2], index=["a", "b", "b"]).set_flags(allows_duplicate_labels=False)

File ~/work/pandas/pandas/pandas/core/generic.py:492, in NDFrame.set_flags(self, copy, allows_duplicate_labels)
    490 df = self.copy(deep=copy and not using_copy_on_write())
    491 if allows_duplicate_labels is not None:
--> 492     df.flags["allows_duplicate_labels"] = allows_duplicate_labels
    493 return df

File ~/work/pandas/pandas/pandas/core/flags.py:111, in Flags.__setitem__(self, key, value)
    109 if key not in self._keys:
    110     raise ValueError(f"Unknown flag {key}. Must be one of {self._keys}")
--> 111 setattr(self, key, value)

File ~/work/pandas/pandas/pandas/core/flags.py:98, in Flags.allows_duplicate_labels(self, value)
     96 if not value:
     97     for ax in obj.axes:
---> 98         ax._maybe_check_unique()
    100 self._allows_duplicate_labels = value

File ~/work/pandas/pandas/pandas/core/indexes/base.py:692, in Index._maybe_check_unique(self)
    689 duplicates = self._format_duplicate_message()
    690 msg += f"\n{duplicates}"
--> 692 raise DuplicateLabelError(msg)

DuplicateLabelError: Index has duplicates.
      positions
label          
b        [1, 2]

This applies to both row and column labels for a DataFrame

In [20]: pd.DataFrame([[0, 1, 2], [3, 4, 5]], columns=["A", "B", "C"],).set_flags(
   ....:     allows_duplicate_labels=False
   ....: )
   ....: 
Out[20]: 
   A  B  C
0  0  1  2
1  3  4  5

This attribute can be checked or set with allows_duplicate_labels, which indicates whether that object can have duplicate labels.

In [21]: df = pd.DataFrame({"A": [0, 1, 2, 3]}, index=["x", "y", "X", "Y"]).set_flags(
   ....:     allows_duplicate_labels=False
   ....: )
   ....: 

In [22]: df
Out[22]: 
   A
x  0
y  1
X  2
Y  3

In [23]: df.flags.allows_duplicate_labels
Out[23]: False

DataFrame.set_flags() can be used to return a new DataFrame with attributes like allows_duplicate_labels set to some value

In [24]: df2 = df.set_flags(allows_duplicate_labels=True)

In [25]: df2.flags.allows_duplicate_labels
Out[25]: True

The new DataFrame returned is a view on the same data as the old DataFrame. Or the property can just be set directly on the same object

In [26]: df2.flags.allows_duplicate_labels = False

In [27]: df2.flags.allows_duplicate_labels
Out[27]: False

When processing raw, messy data you might initially read in the messy data (which potentially has duplicate labels), deduplicate, and then disallow duplicates going forward, to ensure that your data pipeline doesn’t introduce duplicates.

>>> raw = pd.read_csv("...")
>>> deduplicated = raw.groupby(level=0).first()  # remove duplicates
>>> deduplicated.flags.allows_duplicate_labels = False  # disallow going forward

Setting allows_duplicate_labels=False on a Series or DataFrame with duplicate labels or performing an operation that introduces duplicate labels on a Series or DataFrame that disallows duplicates will raise an errors.DuplicateLabelError.

In [28]: df.rename(str.upper)
---------------------------------------------------------------------------
DuplicateLabelError                       Traceback (most recent call last)
Cell In[28], line 1
----> 1 df.rename(str.upper)

File ~/work/pandas/pandas/pandas/core/frame.py:5626, in DataFrame.rename(self, mapper, index, columns, axis, copy, inplace, level, errors)
   5507 def rename(
   5508     self,
   5509     mapper: Renamer | None = None,
   (...)
   5517     errors: IgnoreRaise = "ignore",
   5518 ) -> DataFrame | None:
   5519     """
   5520     Rename columns or index labels.
   5521 
   (...)
   5624     4  3  6
   5625     """
-> 5626     return super()._rename(
   5627         mapper=mapper,
   5628         index=index,
   5629         columns=columns,
   5630         axis=axis,
   5631         copy=copy,
   5632         inplace=inplace,
   5633         level=level,
   5634         errors=errors,
   5635     )

File ~/work/pandas/pandas/pandas/core/generic.py:1100, in NDFrame._rename(self, mapper, index, columns, axis, copy, inplace, level, errors)
   1098     return None
   1099 else:
-> 1100     return result.__finalize__(self, method="rename")

File ~/work/pandas/pandas/pandas/core/generic.py:6209, in NDFrame.__finalize__(self, other, method, **kwargs)
   6202 if other.attrs:
   6203     # We want attrs propagation to have minimal performance
   6204     # impact if attrs are not used; i.e. attrs is an empty dict.
   6205     # One could make the deepcopy unconditionally, but a deepcopy
   6206     # of an empty dict is 50x more expensive than the empty check.
   6207     self.attrs = deepcopy(other.attrs)
-> 6209 self.flags.allows_duplicate_labels = other.flags.allows_duplicate_labels
   6210 # For subclasses using _metadata.
   6211 for name in set(self._metadata) & set(other._metadata):

File ~/work/pandas/pandas/pandas/core/flags.py:98, in Flags.allows_duplicate_labels(self, value)
     96 if not value:
     97     for ax in obj.axes:
---> 98         ax._maybe_check_unique()
    100 self._allows_duplicate_labels = value

File ~/work/pandas/pandas/pandas/core/indexes/base.py:692, in Index._maybe_check_unique(self)
    689 duplicates = self._format_duplicate_message()
    690 msg += f"\n{duplicates}"
--> 692 raise DuplicateLabelError(msg)

DuplicateLabelError: Index has duplicates.
      positions
label          
X        [0, 2]
Y        [1, 3]

This error message contains the labels that are duplicated, and the numeric positions of all the duplicates (including the “original”) in the Series or DataFrame

Duplicate Label Propagation#

In general, disallowing duplicates is “sticky”. It’s preserved through operations.

In [29]: s1 = pd.Series(0, index=["a", "b"]).set_flags(allows_duplicate_labels=False)

In [30]: s1
Out[30]: 
a    0
b    0
dtype: int64

In [31]: s1.head().rename({"a": "b"})
---------------------------------------------------------------------------
DuplicateLabelError                       Traceback (most recent call last)
Cell In[31], line 1
----> 1 s1.head().rename({"a": "b"})

File ~/work/pandas/pandas/pandas/core/series.py:4934, in Series.rename(self, index, axis, copy, inplace, level, errors)
   4927     axis = self._get_axis_number(axis)
   4929 if callable(index) or is_dict_like(index):
   4930     # error: Argument 1 to "_rename" of "NDFrame" has incompatible
   4931     # type "Union[Union[Mapping[Any, Hashable], Callable[[Any],
   4932     # Hashable]], Hashable, None]"; expected "Union[Mapping[Any,
   4933     # Hashable], Callable[[Any], Hashable], None]"
-> 4934     return super()._rename(
   4935         index,  # type: ignore[arg-type]
   4936         copy=copy,
   4937         inplace=inplace,
   4938         level=level,
   4939         errors=errors,
   4940     )
   4941 else:
   4942     return self._set_name(index, inplace=inplace, deep=copy)

File ~/work/pandas/pandas/pandas/core/generic.py:1100, in NDFrame._rename(self, mapper, index, columns, axis, copy, inplace, level, errors)
   1098     return None
   1099 else:
-> 1100     return result.__finalize__(self, method="rename")

File ~/work/pandas/pandas/pandas/core/generic.py:6209, in NDFrame.__finalize__(self, other, method, **kwargs)
   6202 if other.attrs:
   6203     # We want attrs propagation to have minimal performance
   6204     # impact if attrs are not used; i.e. attrs is an empty dict.
   6205     # One could make the deepcopy unconditionally, but a deepcopy
   6206     # of an empty dict is 50x more expensive than the empty check.
   6207     self.attrs = deepcopy(other.attrs)
-> 6209 self.flags.allows_duplicate_labels = other.flags.allows_duplicate_labels
   6210 # For subclasses using _metadata.
   6211 for name in set(self._metadata) & set(other._metadata):

File ~/work/pandas/pandas/pandas/core/flags.py:98, in Flags.allows_duplicate_labels(self, value)
     96 if not value:
     97     for ax in obj.axes:
---> 98         ax._maybe_check_unique()
    100 self._allows_duplicate_labels = value

File ~/work/pandas/pandas/pandas/core/indexes/base.py:692, in Index._maybe_check_unique(self)
    689 duplicates = self._format_duplicate_message()
    690 msg += f"\n{duplicates}"
--> 692 raise DuplicateLabelError(msg)

DuplicateLabelError: Index has duplicates.
      positions
label          
b        [0, 1]

Warning

This is an experimental feature. Currently, many methods fail to propagate the allows_duplicate_labels value. In future versions it is expected that every method taking or returning one or more DataFrame or Series objects will propagate allows_duplicate_labels.